Regenerative Rights-of-Way: Local Harvests and Enhancements in Our Community Commons

by Brad Lancaster

www.HarvestingRainwater.com www.DesertHarvesters.org

Tucson, Arizona, U.S.A and the Santa Cruz river

1904

2007

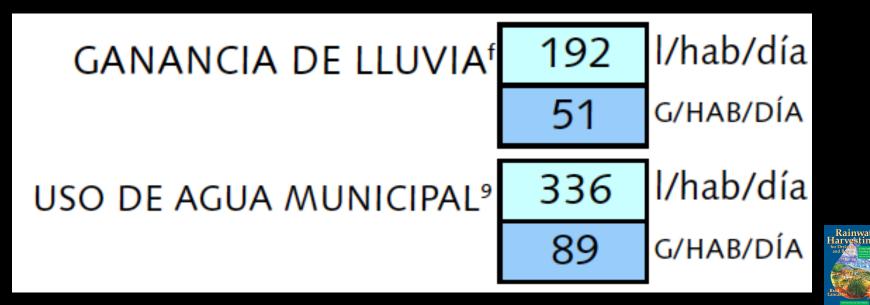
Floods that occurred every 100 years begin to occur every 10 years -

after development paves the watershed and increases the rate and volume of stormwater running off site

Distance is energy

We ignore, deplete, or pollute our local waters — then import ever more distant water

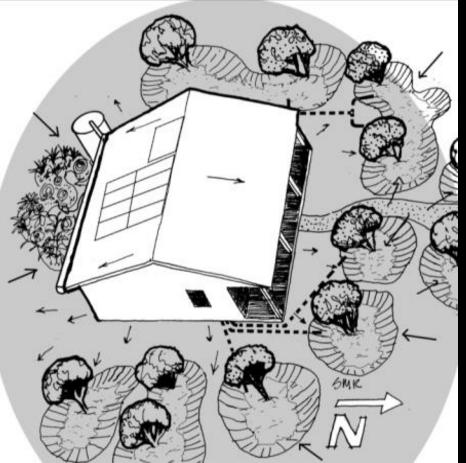
> The largest consumer of electricity (and single source producer of carbon) in Arizona is the pumping of water

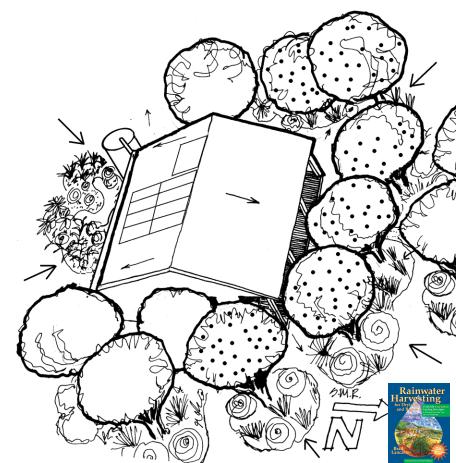


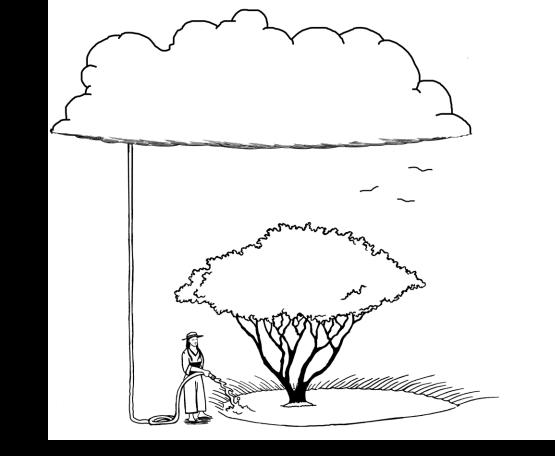
Photograph: Pete McBride on the parched Colorado River delta, by Jonathan Waterman

The average annual rainfall in Tucson is 280 mm (11 inches)

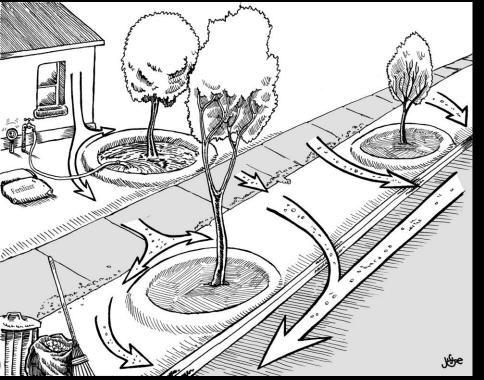
Yet more *rain* falls on the surface area of Tucson in a year of average rainfall, than the annual consumption of Tucson's *water-utility water*


In Ciudad Juárez the numbers are:

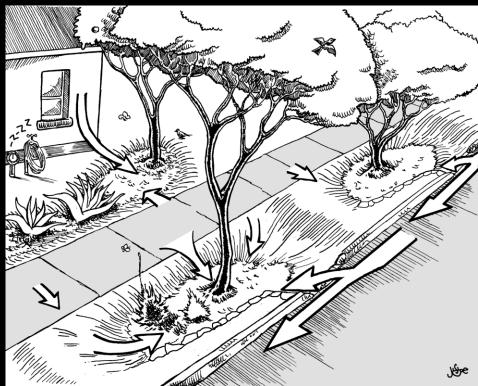



Harvest and utilize on-site water (rainwater, stormwater, greywater, condensate, etc) as close as possible to where it falls

> within the oasis zone
> within 9 meters (30 feet) of catchment surface

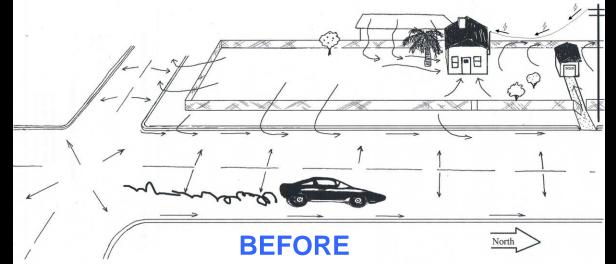

Plant the free rain, and other on-site "waste" waters, to grow *living* infrastructure Make the rain the *primary* irrigation source of all our plantings, while greywater (on private property) is the *secondary* irrigation source.

(U.S. single-family households that do *not* harvest free "waste" waters currently use 30 to 70% of their *drinking water* for irrigation of plants.)



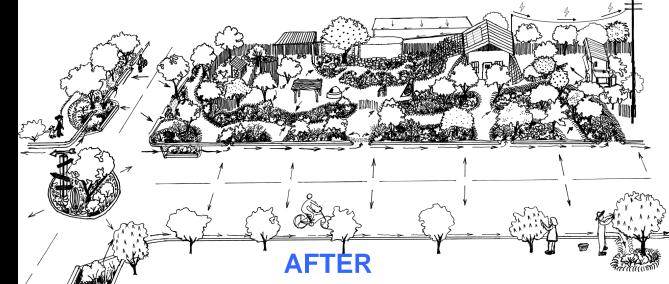
Path to Scarcity

Path to Abundance



- Turns resources into wastes
- Relies on the costly and imported
- Consumes more than it produces
- Disintegrated Drains

- Turns "wastes" into resources
- Relies on the free and local
- Produces more than it consumes.
- Integrated Harvests

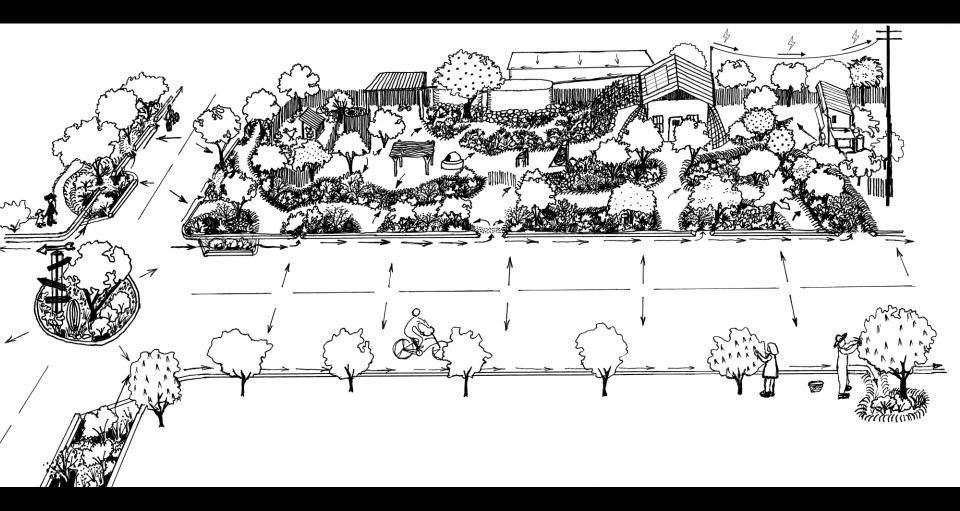


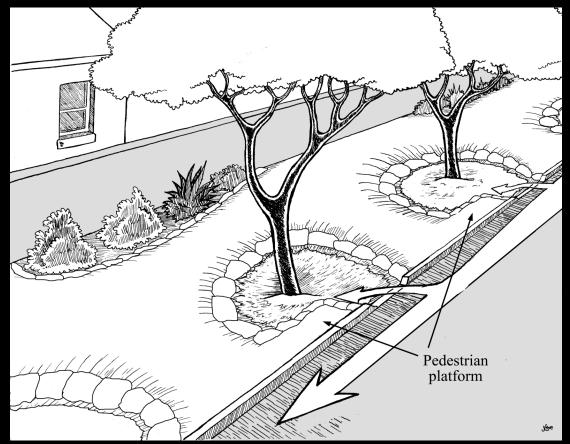
On 0.05-ha (1/8th-acre) lot and surrounding 6-m (20-ft) wide public right-of-way we harvest 378,000 liters (100,000 gallons) of rainwater in an average year of 280 mm (11 inches) of rain

- mostly in soil and vegetation (we have 19,000-liter [5,000-gallon] capacity in tanks)

95% of irrigation needs are met with rainwater, street runoff, and greywater

^ 1994


2006



Lesson learned 1: Start at top of watershed – the water source

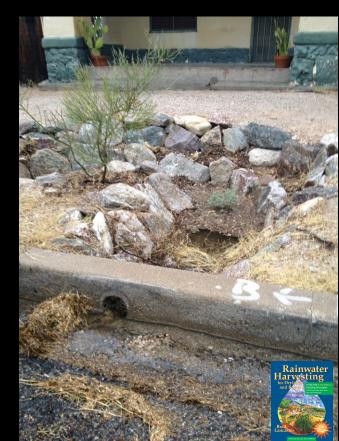
Lesson learned 2: Increase harvestable rain multifold with runoff from adjoining hardscape surfaces

In Tucson, AZ (receiving 280mm [11 inches] of annual rainfall) One kilometer of an average residential street drains over 3 MILLION LITERS of rainfall *per year*.

That's enough water to sustainably irrigate 225 native food trees per kilometer, or one tree every 7.5 meters on both sides of the street - irrigated by the street.

Cutting street curb



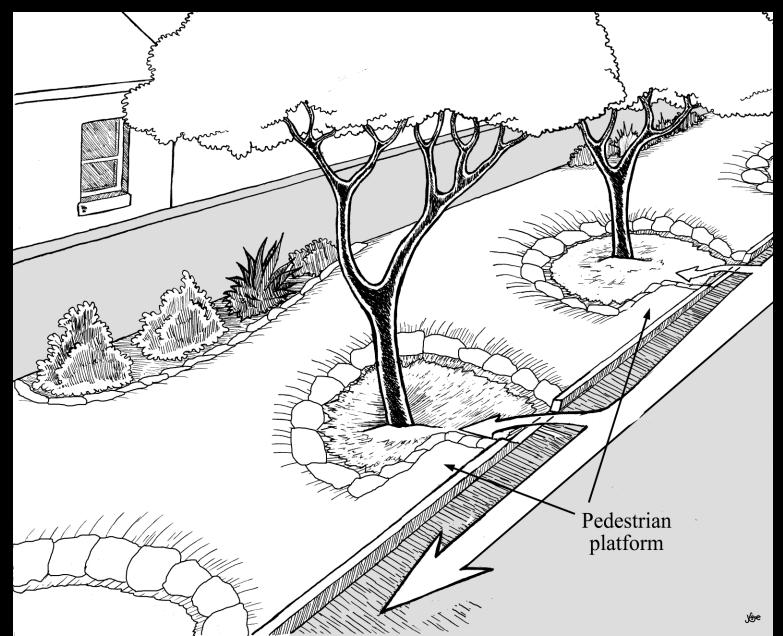

Curb cuts legalized in 2007 \$50 permit

Curb core hole 100-mm (4-inch) diameter

By diverting water from the east side of the street to our (west) side we increased the size of the watershed contributing to our five street-side basins, and two in-street basins, 6 times.

Thus during a single 38-mm (1.5-inch) storm, we harvested 75,000 liters (20,000 gal) in our seven right-of-way basins.

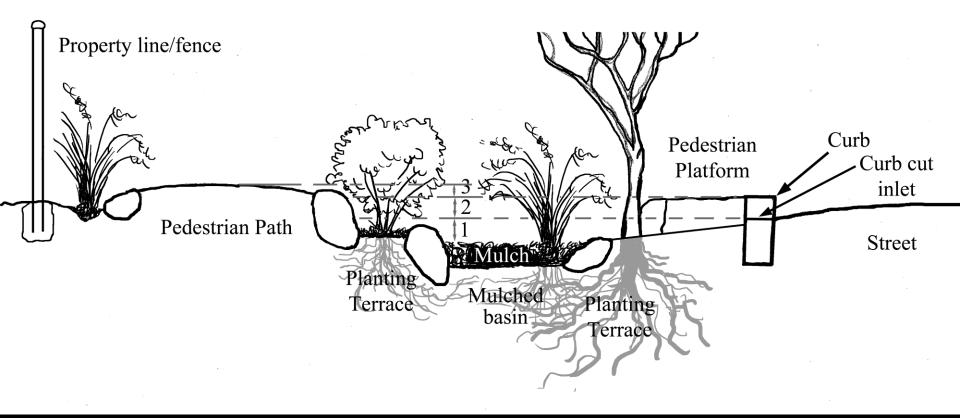
That is the amount of water our normal street catchment area (without diversion) would capture in a 1,000-year storm event.

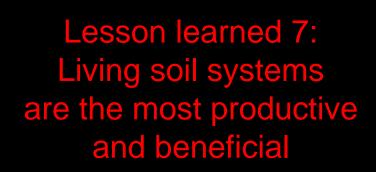


Lesson learned 3: Earthworks have far more capacity than tanks due to the continual infiltration of the water into the soil. And this capacity increases with time as life in the soil

Lesson learned 4: "Backwater" or "eddy" street runoff-harvesting basins are the most stable and self-maintaining

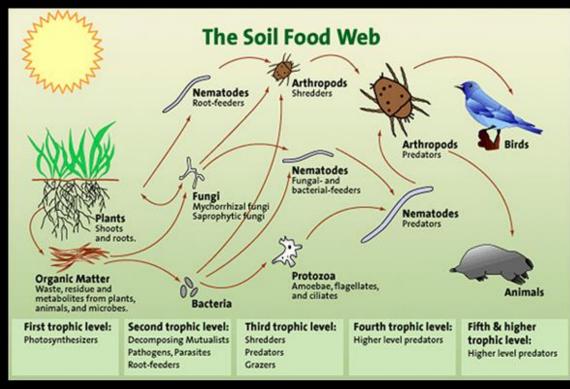
Lesson learned 5: Have 50-mm (2-inch) drop at inlet point to speed up water flow and prevent a detritus dam from forming




Good

Lesson learned 6: Three key elevation relationships

Elevation 1: Top of mulch within basin is lower than elevation of inlet. Elevation 2: Inlet/overflow is the lowest point of the earthwork's perimeter Elevation 3: Property-side path is 50 mm (2 inches) higher than curb to ensure water never flows into property.

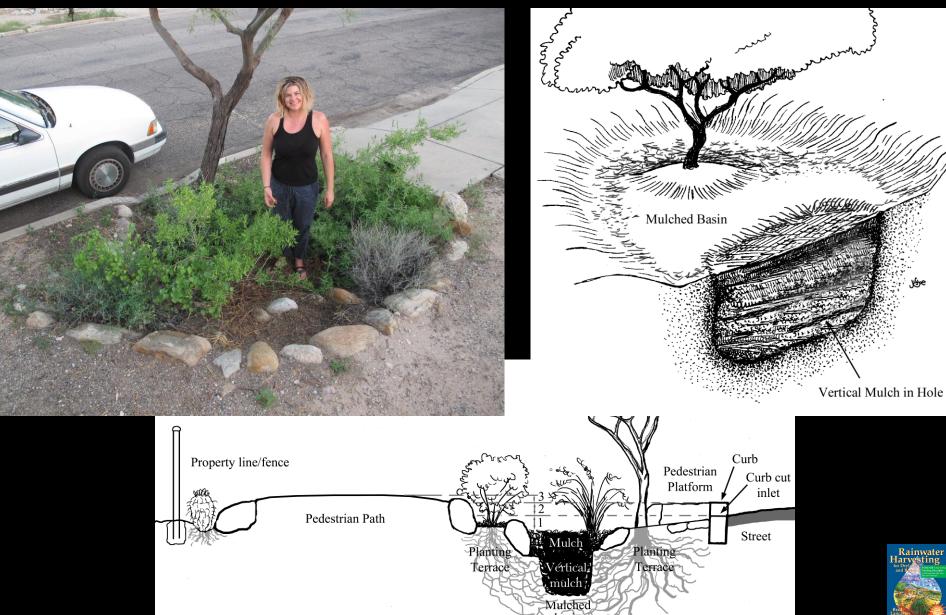

• Trees associated with mulched water-harvesting earthworks are able to grow 33% larger than those without.

This more than doubles the trees' potential sequestration of atmospheric carbon, passive cooling, and food production

• The presence of more organic matter in the soil enables the soil itself to sequester additional carbon

• The natural pollutantfiltering/bioremediation ability of the soil mulched with organic material was *ten times greater* than that of rock- or gravel-mulched soil

Mitchell Pavao-Zuckerman, PhD Biosphere 2 & School of Natural Resources and Environment University of Arizona mzuckerman@arizona.edu



Chipped and Mulchy

Lesson learned 8: Vertical mulching can increase capacity, and reuse of "waste," without increasing potential of standing water

Lesson learned 9: Design public space to maximize the health and wealth of all

The neighborhood now annually harvests over 2.5 million liters (660,000 gallons) of stormwater in the public right-of-way within 10 water-harvesting traffic circles, 33 chicanes, and 85 street-side basins fed by 50 curb cuts and 35 cores

But we could, and need to, increase that harvest by at least 30 times

Before chicane ^

After chicane >

Scarcity – heat island

5.5 °C (10°F) increase of summer temperatures

Abundance – cool island

5.5 °C (10°F) decrease of summer temperatures

AGUA			₽4	PRE	PRECIPITACIÓN PROMEDIO (GANANCIA) ² PERÍODO 1901–2011								
	ENE	FEB	MAR	ABK	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC	ANUAL
mm	12.0	13.1	9.7	8.9	11.9	24.9	64.0	70.2	37.6	26.2	11.7	20.2	310.4
PULG.	0.47	0.52	0.38	0.35	0.47	0.98	2.52	2.76	1.48	1.03	0.46	0.80	12.22
EVAPORACIÓN PROMEDIO (PÉRDIDA) ^{e,2} PERÍODO 1954–2013													
mm	67.4	85.9	141.0	188.0	208.5	244.4		188.9		127.7	87.2	65.5	1788.1
PULG.	2.66	3.38	5.55	7.40	8.21	9.62	8.85	7.44	6.25	5.03	3.43	2.58	70.40 Rainwater

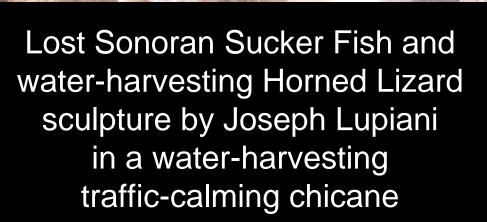
Scarcity – heat island

5.5 °C (10°F) increase of summer temperatures

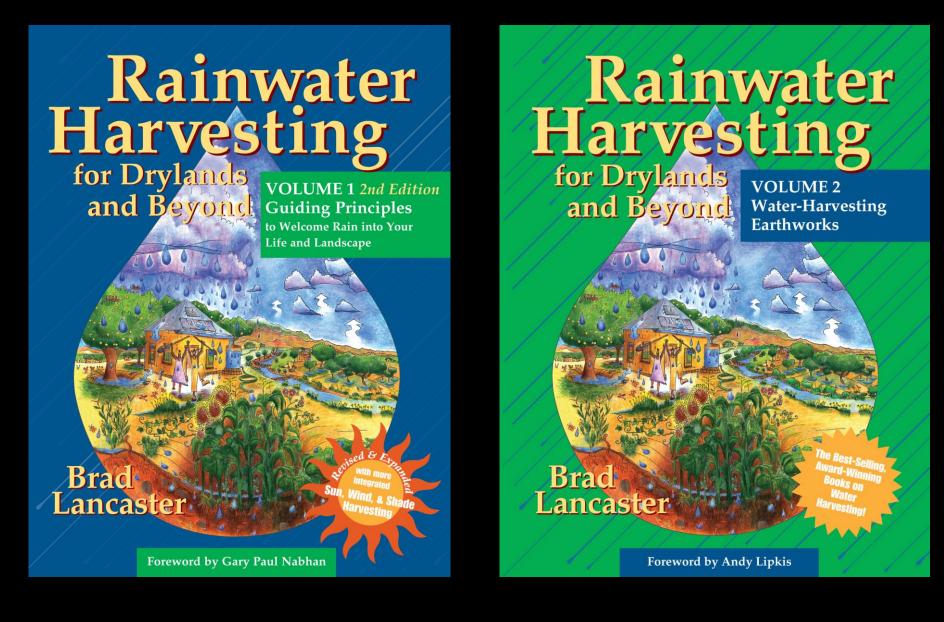
Abundance – cool island

5.5 °C (10°F) decrease of summer temperatures

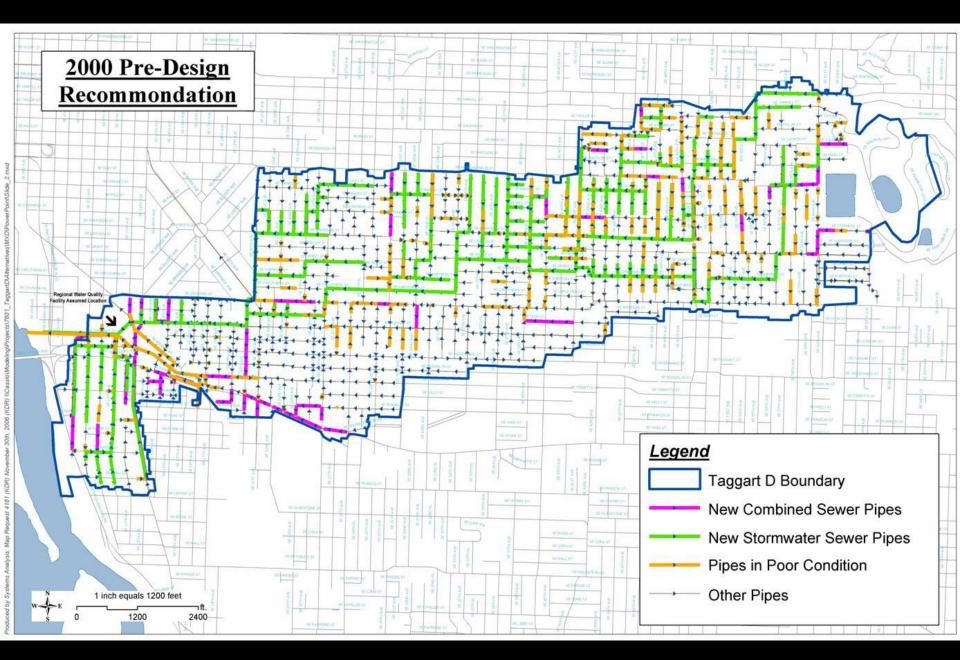
AGUA			₽4											
				PRE	PRECIPITACIÓN PROMEDIO (GANANCIA) ²						PERIODO 1901-2011			
	ENE	FEB	MAR	Авк	/WAY	ЛОГ	JUL	AGO	SEP	ОСТ	NOV	DIC	ANUAL	
mm	12.0	13.1	9.7	8.9	11.9	24.9	64.0	70.2	37.6	26.2	11.7	20.2	310.4	
PULG.	0.47	0.52	0.38	0.35	0.47	0.98	2.52	2.76	1.48	1.03	0.46	0.80	12.22	
EVAPORACIÓN PROMEDIO (PÉRDIDA) ^{e,2} PERÍODO 1954–2013														
mm	67.4	85.9	141.0	1 <mark>88.0</mark>	208.5	244.4	224.8	188.9	158.8	127.7	87.2	65.5	1788.1	
PULG.	2.66	3.38	5.55	7.40	8.21	9.62	8.85	7.44	6.25	5.03	3.43	2.58	70.40 Rainwater	

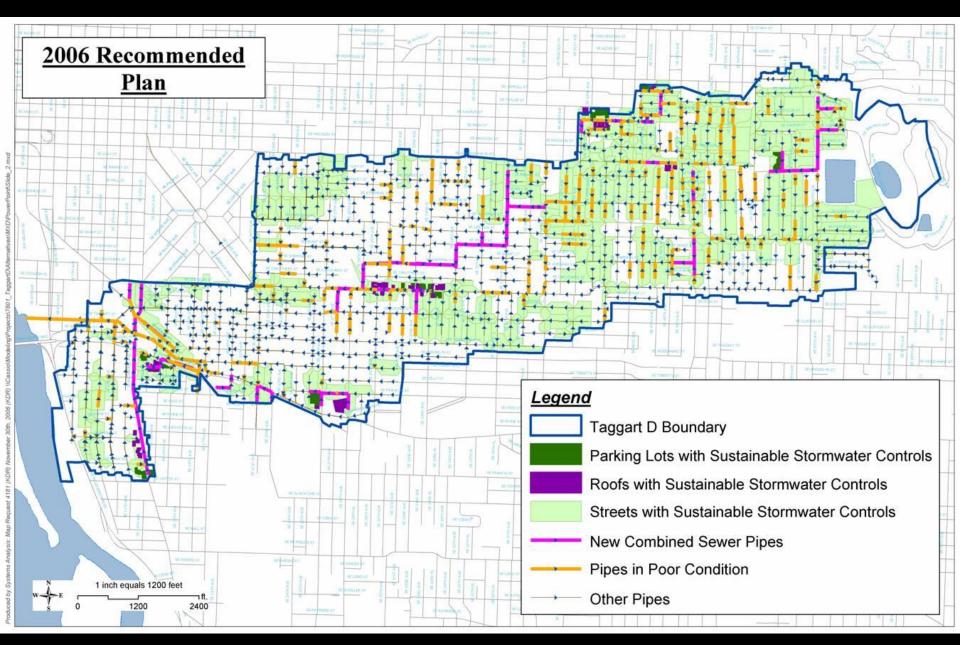


DesertHarvesters.org



BY DESERT HARVESTERS




www.HarvestingRainwater.com

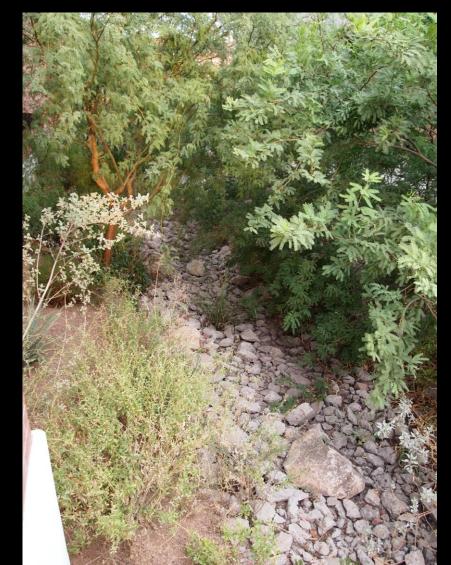
City is divided up into subwatersheds, and those of highest need are identified. Combined Sewer Overflows are the typical problem

Conventional drainage design cost \$144 million

Plan with sustainable stormwater strategies cost \$86 million. \$58 million savings due to the reduction of needed pipe replacement

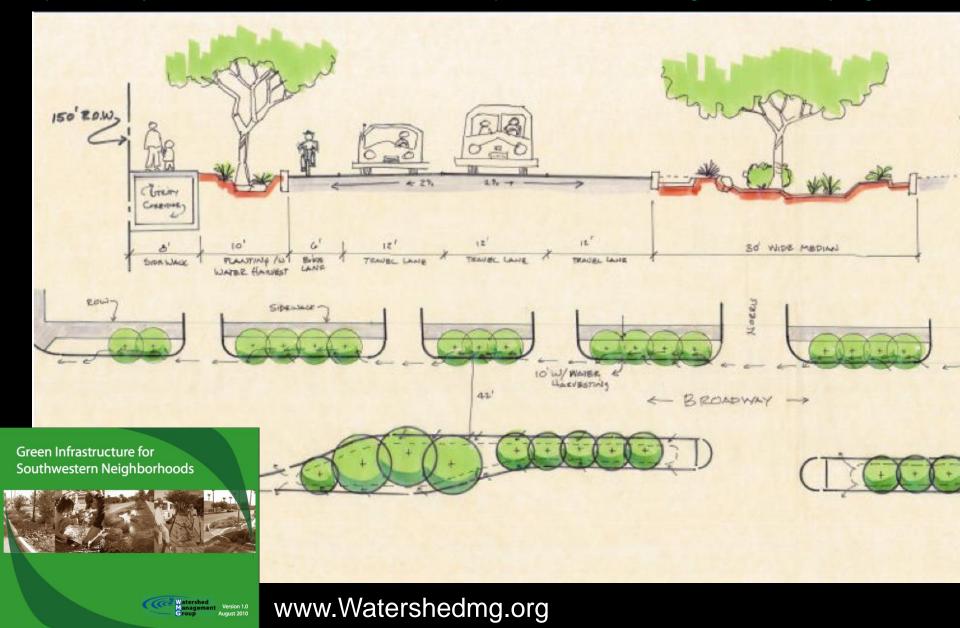
with and the same 90 60 9

Public rights-of-way must not be limited to private utility rights-of-way See "One-Page Place Assessment" page at HarvestingRainwater.com for free download and how-to guide


UBICADO EN LA CUENCA RÍO BRAVO (RIO GRANDE FORT QUITMAN)													
CLIMA													
	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC	ANUAL
'C MÁX	13	16	19	24	28	34	36	34	33	28	22	22	25.8
'C MÍN	0	2	4	8	15	18	22	22	20	14	7	8	11.7
F MÁX	55	61	66	75	82	93	97	93	91	82	72	72	78.4
"F MÍN	32	36	39	46	59	64	72	72	68	57	45	46	53.1
TEMP. MÁX. HISTÓRICA ¹² 46.0° C 114.8° F JUNIO 1994 TEMP. MÍN. HISTÓRICA ¹² -18.5° C -1.3° F FEBRERO 2011													
	SOL		Þ2							21 MAR	21 JUN	21 SEP	21 DIC
	_		GRA	DOS N o S	DADO EL	ESTE POR	EL CUAL E	L SOL SE L	EVANTA	0°	28°N	0°	27°S
LATIT	LATITUD 31.7°		GRADOS N o S DADO EL OESTE POR EL CUAL EL SOL SE OCULTA ² 0° 28°N 0° 27°S										
			ÁNGULO DE ALTITUD AL MEDIODÍA SOLAR (POR ARRIBA DEL HORIZONTE) ^{4,2,4} 58° 82° 58° 35°										
ELEVACI		28 m	PROPORCI	ÓN OBJETO	SOMBRA	EN EL SOL	STICIO DE	INVIERNO	AL MEDIO		* 1:1.4	4YAZV	ил. 0°
	3,70	O FIES											
PROPORCIÓN OBJETO:SOMBRA EN EL SOLSTICIO DE INVIERNO A LAS 9AM & 3PM SOLARES ^{3,4} 1:2.73Y AZMUT ^{1,4} 44°													
V	IENT	0	P3 .	DIRECCIÓN F	REDOMINA	ANTE DEL VI	ENTO (DISDI	DÓNDE) ^{4,8} Y	VELOCIDAD	PROMEDI	D [,] VELOCI	DAD MÁX."	117 73 km/h MPH
	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	km/h MPH
	WSW	WSW	WSW	WSW	WSW	WSW	ESE	ESE	ESE	WSW	WSW	SSW	ANUAL
km/h	14.8	18.5	20.4	24.1	20.4	16.7	14.8	14.8	14.8	14.8	16.7	16.7	17.3
MPH	9.2	11.5	12.7	15.0	12.7	10.4	9.2	9.2	9.2	9.2	10.4	10.4	10.7
A	GUA		Þ4	PRE	CIPITAC	IÓN PR	OMEDIO) (GANA	NCIA) ²	PERÍOL	0 190	1-2011	[
	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC	ANUAL
mm	12.0	13.1	9.7	8.9	11.9	24.9	64.0	70.2	37.6	26.2	11.7	20.2	310.4
PULG.	0.47	0.52	0.38	0.35	0.47	0.98	2.52	2.76	1.48	1.03	0.46	0.80	12.22
				EV	APORA	ción pr	ROMEDI	o (péri	DIDA) ^{و,2}	PERÍO	DO 1954	1-2013	
mm	67.4	85.9	141.0	188.0	208.5	244.4	224.8	188.9	158.8	127.7	87.2	65.5	1788.1
PULG.	2.66	3.38	5.55	7.40	8.21	9.62	8.85	7.44	6.25	5.03	3.43	2.58	70.40
AÑO	MÁS S	ECO ¹²	14.73 m	m 0.58 l	PULG.	1969	AÑO	MÁS HÚ	ÚMEDO	1,2			
PE	RIODO) MÁS	LARGO	SIN PRE	CIPITA	CIÓN M	ENSURA	BLE	GANAN	ICIA DE	LLUVIA'	192	l/hab/día
												51	G/HAB/DÍA
ÁREA ^{E7} 300 km ² POBLACIÓN ^h ^a 1,332,131 USO DE AGUA MUNICIPAL ^o 336 l/hab/día										l/hab/día			
	-	5.8 MI					2010		JUDEN	oon mo	incirrat.	89	G/HAB/DÍA
								EL FREÁ			_		
EXTRACCIÓN ACTUAL DE AGUA SUBTERRÁNEA RECARGA NATURAL DE AGUA SUBTERRÁNEA ^{j,11}													
EN	ENERGUA 🔁 - CANTIDAD DE ENERGÍA UTILIZADA INFA MOVER Y TRATAR AGUA / CANTIDAD DE AGUA UTILIZADA INAN PRODUCIR ELECTRICIDAD ^{NO}												
ESPECIES TOTEM PECES: AVES:													
MEGAFAUNA: REPTILES: PLANTAS:													
ANFIBIO	OS: ()							MAMÍFE	ROS: 0 th				

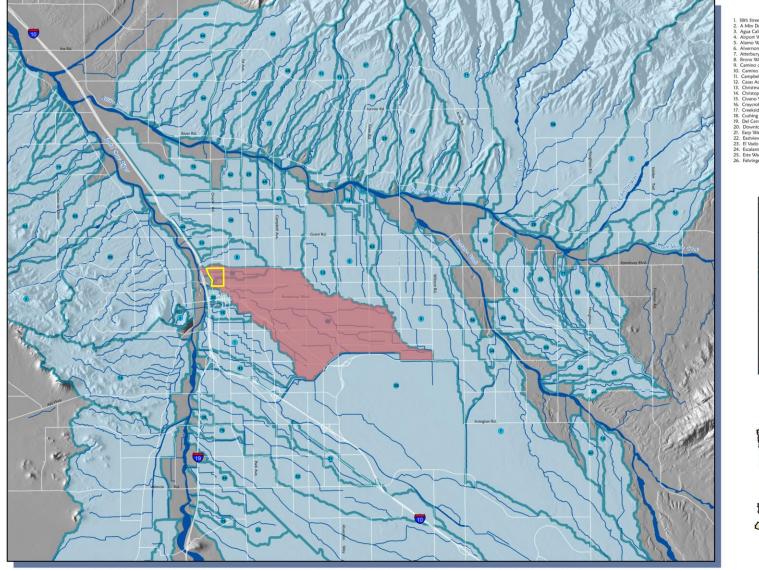
Dead drainageway to living infiltrationway

U of A Architecture and Landscape Architecture Building, Tucson, AZ CALA landscape tour <u>www.cala.arizona.edu</u>



Green Streets Policy in Tucson, AZ

Minimum ¹/₂ -inch (12.7-mm) rainfall to be harvested in roadway or adjoining right-of-way


http://www.mayorrothschild.com/2013/05/29/tucson-to-capture-stormwater-for-irrigation-of-roadway-vegetation/

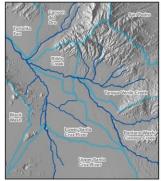
Gila Monster bench by Hiro Tashima next to neighborhood book nook

The Dunbar/Spring Neighborhood Washes & Their Watersheds*

TerraSystems Southwest and the Watershed Management Group, Inc. would like to thank Pima County Department of Transportation Geographic Information Services Division and the City of Tucson Department of Transportation for graciously providing the datasets displayed on this map. The Hydrologic Unit Code (HUC) data, aggregated to subregions, was provided by the USDA-NRCS National Cartography and Geospatial Center. All data is accepted as-is, with all known and unknown inaccuracies and/or errors, and without warranty of any kind.

0 0.5 1 2 3 4

Major Streets



Major Watersheds

*shaded red on map & in list Named Tucson Basin Watersheds

	18th Street Wash	27.	Finger Rock Wash	53.	Roger Wash
2	A Mtn Detention	28.	First Avenue Wash	54.	Roller Coaster Wash
١.	Agua Caliente	29.	Fletcha Caida Wash	55.	Rolling Hills Wash
í.	Airport Wash	30.	Flowing Wells Wash	56.	Rose Hill Wash
ί.	Alamo Wash	31.	Fortyniners Wash	57.	Ruthrauff Wash
5.	Alvernon Wash	32.	Friendly Village Wash	58.	Sabino Creek
۲.	Atterbury Wash	33.	Grant Road Wash	59.	Santa Clara Wash
8.	Bronx Wash	34.	Guillermo Wash	60.	Silvercroft Wash
۹.	Camino de Oeste Wash	35.	Hidden Hills Wash	61.	Spanish Trail Wash
0	Camino Real Wash	36.	Hughes Wash	62.	Stone Avenue Wash
1.	Campbell Wash	37.	Idle Hour Wash	63.	Swan Road Wash
2.	Casas Adobes Wash	38.	Irvington (Michigan) Wash	64.	Sweetwater Wash
3.	Christmas Wash	39.	Julian Wash	65.	Trails End Wash
4	Christopher City Wash	40.	Kreuger Wash	66.	Tucson Arroyo
5.	Civano Wash	41.	Los Reales Diversion Channel	67.	Tucson General Wash
6	Craycroft Wash	42.	Mesqute Ranch Wash	68.	Udall Park Wash
7.	Creekside Wash	43.	Mission View Wash	69.	Valencia Wash
8	Cushing Street Wash	44.	Nanini Wash	70.	Valley View Wash
9.	Del Cerro Wash	45.	North Mountain Ave. Wash	71.	Ventana Canyon Wash
20	Downtown Watershed	46.	Owen Park Wash	72.	Villa Entrada Wash
21.	Earp Wash	47.	Pegler Wash	73.	WBSCR Diversion Channel
22	. Eastview Wash	48.	Pima Wash	74.	West Branch Santa Cruz River
23	. El Vado Wash	49.	Race Track Wash	75.	West University Wash
24	. Escalante Wash	50.	Reyes Wash	76.	Wetmore Wash
25	. Este Wash	51.	Robb Wash	77.	Wrightstown Wash
26	. Fahringer Wash	52.	Rodeo Wash	78.	Wyoming Wash

Pima County Watersheds

Arizona Watersheds

Economic Engine: neighborhood harvesters can make \$25 per hour harvesting, milling, and then selling mesquite pods grown in their own neighborhoods

Dunbar/Spring neighborhood intersection repair, 2006

